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 ABSTRACT

Traditionally, instrument command and control systems have been highly specialized, consisting
mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially
very costly and are inflexible to subsequent engineering change requests, increasing software
maintenance costs. Instrument description is too tightly coupled with details of implementation.

NASA Goddard Space Flight Center is developing a general and highly extensible framework that
applies to any kind of instrument that can be controlled by a computer. The software architecture
combines the platform independent processing capabilities of Java with the power of the Extensible
Markup Language (XML), a human readable and machine understandable way to describe structured
data. A key aspect of the object-oriented architecture is that the software is driven by an instrument
description, written using the Instrument Markup Language (IML). IML, a dialect of XML, is used to
describe graphical user interfaces to control and monitor the instrument, command sets and command
formats, data streams, and communication mechanisms.

Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light
instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be
generic and extensible so that it can be applied to any instrument.
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1. BACKGROUND
NASA Goddard Space Flight Center’s Instrument Remote Control (IRC) project is an ongoing effort
led by the Advanced Architectures and Automation Branch (Code 588). The IRC project supports
NASA’s mission by defining an adaptive framework that provides robust, interactive, distributed
control and monitoring of remote instruments. The IRC framework will eventually enable trusted
astronomers around the world to easily access infrared instruments (e.g., telescopes, cameras, and
spectrometers) located in remote, inhospitable environments such as the South Pole, a high Chilean
mountaintop, or an airborne observatory aboard a Boeing 747. The IRC framework will enable
astronomers, instrument designers, hardware engineers, and other scientists to define new instruments,
control these instruments remotely, and monitor vital instrument telemetry over an intranet or possibly,
for trusted users, the Internet.

The IRC framework will be applied as an operational solution for the Stratospheric Observatory for
Infrared Astronomy (SOFIA) project, controlling the High-resolution Airborne Wideband Camera
(HAWC), the Submillimeter And Far Infrared Experiment (SAFIRE, a spectrometer), and SOFIA's
telescope assembly. The IRC architecture was also used to develop the control and data acquisition
software for one of the proposed detector concepts for the Spectral and Photometric Imaging REceiver
(SPIRE), a focal plane instrument for the European Space Agency's (ESA) Far Infrared Space
Telescope (FIRST).

IRC is a platform independent framework, designed to be generic and extensible so that it can be
applied to any instrument capable of being computer controlled. In order to design an extensible and
flexible architecture, the established goals of the IRC project are to:

• Provide as much platform independence as possible;
• Create a system that is easy to develop, maintain, and extend;
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• Explicitly promote reuse by design and utilize emerging technologies that facilitate software
reuse;

• Greatly reduce the implementation time for facility instruments, which must be reliable,
robust, state-of-the-art, and easily used by scientists other than the instrument's designers;

• Clearly define the interface between hardware and software engineers;
• Facilitate multiple iterations of the instrument description during design and implementation

by means of a software architecture that is readily adaptable to such changes;
• Cleanly separate implementation from description.

2. INSTRUMENT MARKUP LANGUAGE
The Instrument Markup Language (IML) has been created based on experience gained by focusing on
the astronomy domain (and infrared instruments in particular). This enables the development of a
general and extensible framework for instrument control. IML is a vocabulary based on a W3C
standard, the Extensible Markup Language (XML), currently defined using a Document Type
Definition (DTD). A DTD enables an XML parser to validate the XML files, thereby guaranteeing that
the instrument description is complete and correct according to the content constraints the developers
have imposed. A key aspect of the object-oriented architecture, implemented in Java, is that the
software is driven by the IML instrument description. The attributes of an instrument that can be
described by IML include:

• Instrument subsystems
• Logical command set
• Command arguments (including data types, valid values/ranges, and units)
• Command formats
• Logical data streams (e.g., science data, housekeeping, command responses)
• Data field data types
• Data formats
• Communication mechanisms
• Documentation

Although at this stage in the evolution of IML it is the software engineers who are writing the
descriptions, the IRC team envisions enabling the participation of hardware engineers in the task. Not
only do hardware engineers best know the instrument details, but they traditionally provide significant
contributions to formal Interface Control Documents (ICDs). NASA/GSFC believes that IML
documents can serve a similar role – that is, communicating the intricate details of an instrument’s
operation – in a much more structured, formal, and easily manipulated way. Using IML in ICD's will
require that hardware engineers are provided with software tools that hide the details of XML syntax.
By utilizing an XML editor with a sufficiently self-explanatory IML DTD, hardware engineers can be
guided through the process of instrument specification by noting what elements are applicable in a
certain context based on the DTD’s content model. The long-term vision includes providing an
Instrument Description Wizard that will further hide the XML details with an interview-style interface.

Although IML is currently applied only to astronomical instruments, the key aspects of our approach
to instrument description and control apply to many domains, from medical instruments (e.g.,
microscopes) to printing presses to machine assembly lines. Due to the extensible nature of XML, we
can easily imagine dialects of IML for various domains, such as the Astronomical Instrument Markup
Language (AIML). Currently, there is no separate AIML DTD – the generic IML DTD provides all of
the necessary functionality. But a separate AIML DTD could be created if needs were identified which
were not met by the general instrument description solution. The IML (or AIML) DTD can be
extended to support new instrument requirements, often without requiring changes to previously
written instrument descriptions.
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3. INSTRUMENT REMOTE CONTROL ARCHITECTURE
The Instrument Remote Control framework is implemented entirely in Java. Figure 1 shows the high
level architecture of the IRC framework. The IML file, read at run time, drives the behavior of many
general Java objects.

A default Graphical User Interface (GUI) is automatically created upon reading the IML instrument
description. This default GUI provides the means to issue all of an instrument’s (and its subsystems')
commands. Since the IML file describes all of the arguments (including the arguments' data types and
valid values), the GUI can present a command window that enables a user to issue valid commands.
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Figure 1: High Level IRC Framework Architecture

The Instrument Proxy creates objects that know how to communicate directly with the instrument. The
IML instrument description specifies the communication mechanism (e.g., TCP/IP, GPIB) and the
formatting rules for commands. IML can describe a hierarchy of sub-instruments, and each subsystem
(sub-instrument) may use a different communication mechanism or protocol. For example, one
subsystem may have a TCP/IP interface with binary commands and another subsystem may have an
RS232 interface with ASCII commands. Each subsystem in the IML instrument description is
represented by its own Instrument Proxy, which receives command objects, formats them according to
the rules specified in the IML file, and then sends them to the actual instrument.

The Instrument Proxy also creates a Telemetry Parser object for each instrument port that emits
telemetry as defined in the IML file. The parsing rules described in the IML file define how raw data is
parsed into Data Objects (see Section 5: Data Analysis Pipeline).
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Many of the generic framework objects allow the IML instrument description to specify instrument-
specific delegates that override their generic behavior. For example, the SPIRE instrument had four
subsystems, which produced six different telemetry streams. The formats of five of the telemetry
streams could be described such that the generic telemetry parsing engines could parse those streams
directly. However, the generic parsing engine could not handle the science data stream. The format of
the data was extremely complex, and the performance requirements were severe – the software had to
handle data rates of up to 15 MB per second. A highly optimized Java parsing delegate was
implemented and tuned to the demands of the SPIRE science data stream. The class of the delegate
was specified in the IML instrument description. At runtime, the Instrument Proxy created an instance
of this delegate, and plugged it into the science data port's Telemetry Parser. Java's ability to load
classes dynamically makes it straightforward for the generic framework to perform instrument-specific
operations without prior knowledge of the delegate classes.

The flow of Command and Data Objects through the system is managed using a Publish/Subscribe
pattern. Subscribers register with publishers for objects that they are interested in - either for all objects
published, or for just those objects that match particular criteria. This facilitates a dynamic and
distributed flow of control. Instrument proxies subscribe to receive commands from a singleton
Command Dispatcher. GUIs can come and go based on user demands, and can even reside on remote
machines. A GUI publishes commands via the Command Dispatcher, which in turn publishes them to
the interested instrument proxies. This isolates the proxies from the transient nature of the GUIs.

4. IML EXAMPLES
This section includes some examples that illustrate how a typical instrument is described using IML.
Note that much of the detail is omitted from these examples for presentation purposes.  Consider an
instrument named HAWC that contains four subsystems: Detector, ADR, Opto, and Telescope.

<Instrument id="HAWC">
    <Instrument id="Detector"> … </Instrument>
    <Instrument id="ADR"> … </Instrument>
    <Instrument id="Opto"> … </Instrument>
    <Instrument id="Telescope">
        <Port name="Telescope" function="command" dataType="ASCII"
              hostName="testmachine2.nasa.gov" number="6554"
              type="gov.nasa.gsfc.irc.port.TcpIoPort" serverPort="true">
            <!-- Commands and formats go here -->
        </Port>
    </Instrument>
</Instrument>

Figure 2: IML description of instrument and subsystems

A subsystem can have multiple ports; for example, there may be a need for a commanding port and a
telemetry port. The IML fragment in Figure 2 states that the Telescope subsystem has a single TCP
port for commanding, and by examining the port element we see that commands are ASCII. In
addition to the TCP port, the framework supports several other communication mechanisms such as
RS232 and DMA. The architecture allows support for additional protocols to be added easily.

<Command name="Move">
    <Argument name="RA" required="true"
              type="gov.nasa.gsfc.irc.datatypes.Sexagesimal">
        <ValidRange low="00:00:00.0" high="23:59:59.99" />
    </Argument>
    <Argument name="DEC" required="true"
              type="gov.nasa.gsfc.irc.datatypes.Sexagesimal" >
        <ValidRange low="-89:59:59.99" high="89:59:59.99" />
    </Argument>
    <Argument name="Epoch" type="java.lang.Float" required="false" />
</Command>

Figure 3: IML description of telescope MOVE command
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Now let’s examine a sample command from the Telescope subsystem (see Figure 3). The Move
command has three arguments. The (optional) Epoch argument is specified as a float; since its value is
not constrained, it is represented by a textfield in the GUI (see Figure 4). The GUI ensures that the user
input is of the correct type, displaying an error dialog if it is not. The (required) RA and DEC
arguments are specified to be of a special type called Sexagesimal.  Because a range of valid values is
specified, the GUI automatically includes a slider (scale) component that enforces the constraint.

Figure 4: Generated GUI for MOVE command

<RecordFormat name="Move" ordered="true" terminator="&#10"
attributeSeparator=" ">
    <Format name="Command" format="MOVE" ordered="true" />
    <Format name="RA" format="%s" ordered="false" header="RA=" />
    <Format name="DEC" format="%s" ordered="false" header="DEC=" />
    <Format name="Epoch" format="%.1f" ordered="false" header="EPOCH=" />
</RecordFormat>

Figure 5: IML description of telescope MOVE command format

Each command has an associated format, specified in the IML, which describes how it should be
formatted for transmission to the instrument. Based on our sample Command and RecordFormat (see
Figure 5), a MOVE Command sent to the Telescope subsystem will look like this:

MOVE RA=23:59:59.99 DEC=-37:44:30.97 EPOCH=100.67 <cr>

While there are many advantages to using IML, one of the most significant is the ability to defer some
of the hardware implementation details as long as necessary during the development period. Software
often needs to be developed in parallel with the hardware it is to control. Since hardware engineers
may need to change various details as their subsystems are integrated, or as new hardware components
with different characteristics are manufactured, it is crucial that the software architecture provide a
degree of separation between the objects that represent the system and the hardware nuts-and-bolts.

IML enables iterative development because the instrument description is read at runtime.  A concrete
example of this is the ability to dynamically alter the graphical user interface to reflect a different
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hardware interface. For example, suppose the hardware engineer decides that he wants to make
available a new Telescope Command.  He can simply define his new command and its format in the
IML file, and the next time the application is run, the new Command will appear in the GUI. No new
code must be written, nor is recompilation necessary.

5. DATA ANALYSIS PIPELINE
After parsing a raw telemetry stream, the Telemetry Parser publishes the telemetry as Data Objects.
Any subscriber in the system can register to receive these Data Objects; however, the IRC framework
includes a Data Analysis Pipeline to facilitate the processing of this data. This real-time pipeline is
composed of Pipeline Elements that are linked together. Pipeline Elements can be:

• General purpose data processing algorithms, such as parameterized algorithms that apply a
scale factor or polynomial function to selected input data

• Instrument specific data processing algorithms
• Archivers and archive readers
• Data visualizations
• Data analysis scripts for autonomous commanding

Pipeline Elements are described using the Pipeline Algorithm Markup Language (PAML), an
extension of IML (using the built-in extension capabilities of XML DTDs). With PAML, you must
define the following attributes of a Pipeline Element:

• Implementation class – the Java class that implements the Pipeline Element
• Outputs – identical to the description of an instrument's logical telemetry stream (but without

formatting information)
• Inputs – a set of characteristics that valid inputs must have
• Properties – a set of attributes that can be used to configure the Pipeline Element

Based on the PAML description, IRC provides two mechanisms for connecting Pipeline Elements
together and setting Pipeline Element properties: GUI and scripted control. Since the inputs and
outputs are described, the IRC framework allows only valid connections. Pipeline Elements can be
added, removed, or configured while data is flowing through the pipeline.

IRC provides many general-purpose algorithms, and aims to make it easy to develop instrument-
specific algorithms. Taking advantage of Java's dynamic class loading, the IRC framework doesn't
have to know about the algorithm implementation class until runtime; by referencing the location of
the Java byte code in the PAML file, the pipeline manager is able to create instances of pipeline
algorithms as needed. Also, by using the Java Native Interface (JNI), algorithms can be implemented
in any native language such as C, C++, or FORTRAN, or possibly even IDL.

An archiver is a type of Pipeline Element that can be attached to the output of any other Pipeline
Element to create a persistent record of the output of that Pipeline Element. An Archive Reader can
then be used to read the archive, feeding the archived data stream into the pipeline. A Pipeline Element
receiving archived data in this way need not have any knowledge of the archiving operation.

6. DATA VISUALIZATIONS
The IRC software provides several visualizations based upon the VisAGE (Visual Analysis Graphical
Environment) architecture. VisAGE is a GSFC effort providing a distributed, platform independent,
multimedia visualization development environment which takes advantage of JavaBeans, Java2D, and
Java3D technologies. The IRC visualizations have been enhanced for efficiency, providing a robust
environment to visualize data that must be displayed at high speeds. Notable features include anti-
aliasing, logarithmic scales, snapshot printing and saving, and statistics calculation and display.
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Visualizations fit into the overall architecture as special purpose Pipeline Elements. This design
affords the IRC software some important flexibility. Since a visualization is a Pipeline Element, it may
be placed anywhere within the pipeline. This allows a user to view raw data early in the pipeline, or
the results of complex calculations performed by a series of Pipeline Elements – or both: The
framework does not restrict the user to a single visualization. A user may place several visualizations
at various points in the pipeline, providing the ability to monitor data at many stages of analysis
simultaneously. The implementation also allows a visualization to publish information, such as
statistical or snapshot data, to other parts of the pipeline for archiving or further processing.

 

Figure 6: Visualization Examples

The current architecture provides a generic way to select and organize streams or channels of data
from upstream Pipeline Elements. Information can then be forwarded to visualizations in a format
specialized for display purposes. This facilitates the ability to easily plug new visualizations into the
current architecture by allowing them to concentrate on the display of data, rather than its organization.
It also accommodates the ability to switch between related visualizations quickly and easily. This
design may be expanded in the future to provide wrappers that format data for viewing with third party
visualization packages.

7. SCRIPTING
The ability to script the instrument control software is an important feature of the IRC framework,
because it provides the user with a way to sequence common tasks. Currently, scripts must be written
in JPython; however, the IRC architecture allows for future support of other scripting languages.
JPython is a Java implementation of Python, an interpreted, object-oriented programming language.
JPython and Python are free and the source code is available under an Open Source license.

A simple script that strings together a set of instrument commands can be written easily. Such a script
is shown in Figure 7. A script can also prompt the user for input, and can add, remove, and configure
Pipeline Elements. Support for looping and control flow is included. Using more advanced capabilities
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of JPython, a script can extend the IRC framework in interesting ways. JPython has full access to all
Java packages and Python modules and can extend Java objects. These features have been used to
create scripts that implement pipeline algorithms, insert themselves into the pipeline, issue commands
based on the analysis of incoming data, and then remove themselves from the pipeline.

# File: powerup_detector.py
# Initialize the MkII electronics at detector power-up

from gov.nasa.gsfc.irc.datatypes import BitArray

sendCommand(SPIRE_DETECTOR, "Stop Data")
sendCommand(SPIRE_DETECTOR, "Reset Time Counter")
sendCommand(SPIRE_DETECTOR, "Reset Command Counter")
callProcedure("Initialize Row Address Lookup Table")
callProcedure("Initialize Parameter RAM Lookup Table")
callProcedure("Setup FFCP Frame", BitArray("0001"), 8, 100)

Figure 7: Simple Script - Powerup Detector

To make a script available to the system, a fragment of IML must be written that describes the script,
its arguments (including data types and valid values), and any documentation for the script. This IML
fragment can be added to a library of scripts or to the description of a subsystem to make the script
appear as a primitive command to the user. A sample IML script declaration is shown in Figure 8.

<CommandProcedure name="Setup FFCP Frame"  abbrev="setupFrame"
                  language="Python" file="detector/setupFrame.py" >
    <Argument name="Column Mask" type="gov.nasa.gsfc.irc.datatypes.BitArray"
              default="0001" abbrev="mask">
        <ValidBitRange high="3" /> <!-- 4 bits -->
    </Argument>

    <Argument name="Number of Rows" type="java.lang.Integer"
              default="8" abbrev="numRows">
        <ValidRange low="1" high="32" />
    </Argument>

    <Argument name="Row Select Frequency"
              type="gov.nasa.gsfc.irc.datatypes.InverseHertz"
              default="160" abbrev="freq" unit="kHz">
        <ValidRange low="5" high="4095" /> <!-- 12 bits -->
    </Argument>
</CommandProcedure>

Figure 8: IML Script Description - Setup FFCP Frame

8. THE VISION: THE FUTURE OF IRC
The IRC framework supports instrument development from early design through operations and
maintenance to minimize software development time, minimize development costs, maximize reuse of
software components, and maximize flexibility of instrument architectures.

To minimize software development time and to accommodate new instruments, the IRC framework
will make it easy to generate large portions of the instrument control application automatically from a
formal description of the instrument. This instrument description will be used to create customized
graphical user interfaces, software component interfaces, specific component configurations, and
documentation. Software tools will be created to help instrument designers develop descriptions of
instruments. Thus, as new instruments are added to a system, or as specifications for existing
instruments are modified, the effort to adapt the software to these changes will be incremental rather
than major.

The IRC framework that we envision can be applied to any or all phases of the science life cycle to
maximize the science potential of missions. An important enhancement to the IRC framework will be



June 19, 2000 Page 9

to provide the ability to quickly develop simulations that accurately model instrument operations with
whatever degree of fidelity is deemed necessary. Simulations allow many activities to be performed
long before instrument development is complete. Instrument designers can develop, validate, and
modify designs quickly and efficiently. Scientists can begin science planning and data analysis
algorithm development; data archival, retrieval, and publication scenarios can be worked out; and
support staff can begin training for instrument operations very early in the program. The underlying
open software infrastructure that we envision will enable single and multiple discipline behavior
models to be assembled and synthesized into instrument simulations to facilitate the rapid design and
development of next generation instrument designs and operations.

The IRC framework of the future will maximize the ability to incorporate emerging technologies. The
design supports a high degree of configurability, allowing it to be tuned for specific observatories or
other factors. Processes can be run on a single computer or on multiple heterogeneous computers,
ranging from small, low cost hardware components to high-end workstations. Processes can be run
either at the observatory or remotely over the Internet (or both). This provides an instrument
development team the flexibility to use the hardware components that best fit the operating
environment and instrument requirements. The framework will support the cross-platform migration of
functions and necessary reconfiguration if these requirements change. This flexibility enables a new
design in which small, embedded software components are placed at the point of origin of the
generated data (smart sensors) and at the point of device control (smart actuators). The envisioned
configurable software framework will enable these software solutions to be easily developed,
enhanced, maintained, and reused for different devices, different instruments, and different domains.

To achieve “Smart” instruments and simulations, we envision incorporating advanced technology in
the near future. The IRC framework will allow the seamless integration of technologies such as agents,
model-based reasoning, genetic algorithms, and artificial neural nets.

9. NEXT STEPS
The near term efforts of the IRC team fall into two main categories:  (1) Enhancing and improving the
general IRC framework, including incorporating lessons learned from applying it to SPIRE; and (2)
using the IRC framework to develop the instrument control and monitoring software for HAWC.  The
work in this section is in preliminary stages of design. Specific features and technologies are identified
primarily for illustrative purposes, to give a sense of the direction in which we are headed, and should
not be construed to indicate firm architectural decisions.

During SPIRE development, we came to the conclusion that it needs to be much easier to develop
pipeline algorithms. A major goal is to redesign the pipeline base classes to allow custom algorithms to
be developed without requiring intimate knowledge of the entire IRC pipeline architecture.

We believe that the Instrument Markup Language can be improved. Currently, it matches the internal
representation of the instrument fairly closely; it hasn’t changed significantly since our initial
Java/XML prototyping efforts in late 1998. IML should be optimized for maximum expressiveness
and maintainability, and it should model the way instrument designers think when they develop ICDs.
For example, IML currently requires the specification of each command in isolation from other
commands, and it requires the specification of a command format for each command to be sent to the
instrument. However, instrument designers may more naturally group commands into command
families, or may specify general rules for formatting groups of commands. We plan on redesigning
IML to support this and other modeling techniques. We intend to take advantage of the emerging XML
Schema standard which will provide a superset of the capabilities of XML DTDs.

Currently, the IRC framework provides a default GUI that enables a user to issue every command and
script defined in the IML. This type of GUI is appropriate for an instrument’s engineering test phase,
but is not so useful for general instrument operations. We have always intended to have a way to
customize the GUI. The mechanism for doing this will likely involve applying a stylesheet to the IML,
mapping it to a GUI specification. Different stylesheets could be developed for novice users, expert
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users, testers, and operators. Observatory-level stylesheets might impose GUI standards across  several
instruments. Our current thinking is to apply emerging XML technology such as Extensible Stylesheet
Language (XSL), the Bean Markup Language (BML), or the User Interface Markup Language
(UIML), but more research in this area is needed.

In parallel with our efforts to improve the general IRC framework, we will be applying the framework
to the development of HAWC's instrument control and monitoring software. Applying the IRC
framework to a new instrument involves taking some or all of the following steps:

1. Develop the instrument description. For HAWC, this will involve mapping the ICDs from each of
the instrument subsystem teams, including the ICD for SOFIA's telescope assembly, into an IML
description for the subsystem.

2. Develop the instrument-specific real-time pipeline algorithms.
3. Develop custom GUIs for the various instrument users.
4. Develop new visualizations.
5. Develop instrument-specific scripts.
6. Develop any instrument-specific delegates (for special purpose parsing or response handling).
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